Course Code:	MATH322
Course Title:	Complex Analysis
Credit Hours:	(3 0 3)

Course Objectives:

The objectives of this course are:

- a) To understand basic theory of algebraic and geometric structures of the complex numbers.
- b) To understand the concepts of analyticity, Cauchy-Riemann relations and harmonic functions are then introduced with some applications in fluid dynamics.
- c) To learn Complex integration and complex power series.
- d) To learn the classification of isolated singularities and examine the theory and illustrate the applications of the calculus of residues in the evaluation of integrals.

Reading list:

- 1. D.G. Zill, P.D. Shanahan, "A First course in Complex Analysis with Applications", 2nd edition, Jones and Bartlett Publishers, 2008.
- 2. J. W. Brown, R.V. Churchill, "Complex variables and applications", 9th edition, McGrawHill, 2013.
- 3. R.A. Silverman, "Complex Analysis with Applications", Dover, 2010.
- 4. E.B.Saff, A.D. Snider, "Fundamentals of Complex Analysis with Applications to Science and Engineering", 3rd edition, Prentice Hall,2003.

Lecture-wise distribution of the Contents

Lecture #	Торіс
L1-L3	Introduction to the course, Complex Numbers and Their Properties, Complex
	Plane, Polar Form of Complex Numbers, Powers and Roots, Sets of Points in
	the Complex Plane,
L4-L6	Complex Functions, Complex Functions as Mappings, Linear Mappings,
	Special Power Functions, Reciprocal Function, differences between real and
	complex functions
L7-L9	Limits and Continuity, Complex functions as vector fields
L10-L12	Differentiability and Analyticity
L13-L14	Cauchy-Riemann Equations
L15-L16	Harmonic Functions, Applications: Orthogonal families, Gradient fields,
	Complex potentials and ideal fluids, Heat flow
L17-L19	Elementary functions: Exponential and Logarithmic Functions, Complex
	Powers, Trigonometric and Hyperbolic Functions, Inverse Trigonometric and
	Hyperbolic
	Functions
L20-L23	Real Integrals, Complex Integrals
L24	MID EXAM
L25-L26	Cauchy-Goursat Theorem
L27	Independence of Path
L28-L30	Cauchy's Integral Formula, Cauchy's Integral Formula for derivatives,

	Consequences of Cauchy's Integral Formula: Cauchy's Inequality, Liouville's
L31-L33	theorem, Fundamental theorem of algebra,Morera's theorem,Maximum
	Modulus theorem.
L34-L36	Sequences and series, Taylor series, Laurent series, zeros and poles
L37-L38	Residues and Residue theorem
L39	Evaluation of Real Trigonometric integrals
L40	Evaluation of Real improper integrals
L41	Integration along a Branch cut
L42-L43	Miscellaneous integrals
L44-L45	The Argument Principle and Roche's theorem
L46-L48	Summing infinite series